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The total electric field gradient (EFG) tensor V,q is calculated by numerical 
integration of threedimensional integrals. Each of them is solved a) by integrat- 
ing over one dimension analytically and b) by integrating over the remaining 
two dimensions on the basis of a Gauss-type integration rule. The use of 100 
abscissas in the twodimensional numerical integration scheme yields satis- 
factory accuracy which was checked by evaluating overlap integrals; an 
increase to 400 abscissas does not increase the result drastically. Calculating 
quadrupole splittings AEQ from numerically integrated electric field gradient 
tensors Vpq we observe that depending a) on the amount of covalency and b) on 
the amount of deviation from octahedral or tetrahedral symmetry, involved in a 
molecular system, overlap and ligand contributions to Vpq play an important 
role. Especially for the sandwich compound ferrocene, Fe(CsH5)2, we find a 
significant difference between AE~ urn int. which follows from the numerical 
integration method, and AE~ . . . . .  ,onal which is derived from effective charges. 
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1. Introduction 

In molecular systems with high covalency it is sometimes a too crude approxima- 
tion to calculate the electric field gradient (EFG) tensor at the nuclear site of atom 
A from valence electrons of A and from effective charges at ligand sites B only 
[1-3]; this approximation implies that all charges within the molecular system 
under study - besides the valence electrons of A - are lumped together to effective 
point charges at B while the space between A and B, and between sites B is "empty". 
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A more rigorous treatment of the problem is to divide the total charge of the 
molecular system into positive point charges (nuclear charge plus charge of core 
electrons) located at atomic sites, and into a charge distribution of valence 
electrons which may be derived from molecular orbital (MO) calculations. 

2. General 

Following the idea to calculate the EFG tensor Vpq (for example at the nuclear site 
of a M6ssbauer atom A) from the positive point charges (located at ligand sites B) 
and from the whole valence electron charge distribution within the system under 
study, we have two contributions: 

Vpq : Vplq gand . . . . .  .~_ V;q l  . . . . .  lect . . . .  . (1)  

The first term in Eq. (1) is given by: 

rp)(rq - 3pq[r B -  rA[ 2 (2) vligand . . . .  s =  ~ ,  qsEl_y(lrB_rA[) ] 3(rp s -  A B__~qq) 
"Pq B#A IrB--rAI 5 ' 

with r A and r n being space vectors locating atom A and B, respectively. The core 
charge of ligands B is qa, and the quadrupole polarizability of the electronic shell 
of ion A is ~(IrB--rAI) [1, 4]. The EFG contribution of all valence electrons is 
represented by the expectation value of the tensor operator 

L ,'~ iFi c 2 .~rp q-- Opqr i (3) 
~pq= [ I  -?(r~)] r5 , 

i = i  

where the summation is over all valence electrons, i= 1 . . . .  N. The space vector r i 
is given with respect to ion A. V~ ~ence elect .... then results from: 

Vp~lencr  elect . . . .  = - eo<~l fz  ql~>. (4) 

e0 is the (positive !) elementary charge, and ~ is the many-electron MO wave- 
function, which describes the electronic configuration of the molecular system 
under study. In the Hartree-Fock approximation of MO calculations 7 t is a Slater 
determinant of orthonormal MO's, which are linear combinations of atomic 
orbitals (AO) ~.  [5, 6]. Eq. (4) can be rewritten in terms of atomic expectation 
values [7] : 

VpValence electrons __ q - 2 < el Gql  >. (5) 
#v 

Since the MO basis set consists of real AO's 

flu =f,(r) E.,..(f2), (6a) 

we are able to simplify the evaluation of atomic expectation values <~,.1l~1~> 
by expressing the EFG tensor operator l~pq in terms of real spherical harmonics 
rlm(O) 

f,pq = 1 -r 3e(r) +E2 Cvq2M y z M ( ( 2 ) .  ( 6 b )  

M = - 2  
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The coefficients C2~ take the values: 

C 2 0 _  (720 ~) (-~ 20 1 X / ~  
xx - -  ~ y y  = ------zz - -  2 

2,2__ 2,2 3 /1 /~  
C x  x _ _ C y  r = C 2 , - 2 = _  

2~/ 15 

2,1 1=3 4 ~ 1  ~ C= = CZ; - 

(7) 

3. A p p r o x i m a t i o n s  

3.1. Quaclrupole Polarizability 

We are interested to calculate the EFG at the nucleus of 57Fe in iron-containing 
molecular systems; therefore we need for the numerical integration of the atomic 
expectation values (~ulf~pql<> in Eq. (5) the analytic form of ( I -  ?(r))ve. Since 
we could not find an analytic formula for ?(r)ve in the literature we derived 
(1 - ? ( r ) ) v e  following approximately the lineshape [8] of (1 -?(r))cu +, and using 
the known shielding- and antishielding factors, R and ~| for iron [1, 4] : 

R = (7(r)r-  3 >3d = 0.32, (8a) 
<r- ~ >~ 

7o0 = lim ?(r) = - 9.1. (8b) 

(The corresponding value for 7~ for Cu + is - 9 . 7  [8]). 

We approximate (1 -?( r ) )  by a set of two equations, one for small and one for 
large r-values: 

1 - ?(r) = (1 - ? o~)ar 3, 0 ~< r ~< r o ; (9a) 

1-7(r )=(1-7~o)  1 (r_b)5- , r o ~ r ~ < ~ .  (9b) 

The choice of the r<dependency of 1 - ?(r) in Eq. (9a) guarantees that the integrand 
during the integration procedure of <~'~1 ~'pql~'~> does not become infinite for small 
r values. The constant a in Eq. (9a) follows from the condition that integrating the 
radial part of (0, l  ~'pqlO~ ) for an iron 3d-valence electron leads to 

i r , , 1 - 7 ( r )  J3dt.r) ~ f3a(r)r 2 dr = (1 - ?o~)a = (1 - R ) ( r -  3>3a, (10a) 

or, which is equivalent 

1 - R  
a = ( r -  3>3 d . (10b) 

] - ? ~ o  

Eq. (9b) takes care of the fact that ?(r) is close to 7oo if r takes large values. The 
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constant b and the r-value r o from Eq. (9) is obtained by requiring that (1 - 7 ( 0 )  
can be differentiated for all r values. Thus, we get the conditions: 

1 
ar~ = 1 - (r ~ _ b) 5 , (1 la) 

and 

5 
3ar 2 -  ( r o -  b) 6. ( 1  lb) 

In Fig. 1 we plot the (1 - 7(0) curve for S7Fe, which we derive from Eqs. (9-11) and 
compare this result with the corresponding curve for Cu + . 

- 'LO 

-., 08 

~ 02 

/ /  

/ /  
/ 

r[o.u ] 

Fig. 1. Graphic presentation of(1 - 7(0) 
normalized to ( 1 - 7  ~ ) as derived from 
Eqs. (9, 10) for iron (solid line), and for 
Cu + (dashed line, Ref. [8])  

3.2. Integrals 

Depending on the center to which AO's ~k u and ~v in Eq. (5) belong, we distinguish 
various valence electron contributions to the EFG tensor Vpq at the nuclear site of  
atom A: 

V;qle . . . .  l eet  . . . .  = Vpql, A--A ..~ Vpql, B-B ..~ V;ql ,  A--B ~_ V;ql, B ~ .  (12)  

The various terms are discussed in the following: 

1) # and v both belong to the (M6ssbauer) atom A, then Vp~ I'A-* describes the 
contribution of  the EFG at A by the valence electrons of  A: 

vval. A - A  _ ~ '  Puv f f~(r)  1 -- 7(r) ~ ~ , 2 �9 p~ - - - - e o ~  ~ ~ j A r ) r  dr ( 1 3 )  

Izv 0 

+2 

M =  - 2  

The analytic integration of the radial part yields: 

co 

0 

The analytic integration over the angular part of  Eq. (13) is worked out in terms of  



Overlap and Ligand Contributions to the Electric Field Gradient 89 

products of Clebsch-Gordon coefficients [9] : 

+ 2  

Clumul . . . .  2 Cp~ M f Y,~...(~X)Y2M(Q)Y,~mdQ) dO.  (15) pq 
M= - 2  

2) # and v both belong to the ligand atom B, then v vaL B-B is the contribution to �9 pq 

the E F G  at A by the valence electrons of  B" 

B B . . . .  1,B-B_ , ,  8 3RpRq--6pq. (RB) 2 
vpq - - e o t ' - 7 o o )  Z Z P,u (RB)5 

B # 
(16) 

Eq. (16) includes the approximation that the valence electrons of  ligand B are 
located at the atomic site of  B, which is given by the space vector R B = (R B, R B, R~ ) 
with respect to center A. Especially in the cases where the interatomic distance 
between A and B, R B, is small compared to the radial distribution of  Zu I~[ 2 
around B, Eq. (16) might be a too crude approximation. We therefore also calculate 
(see Eq. (5)) 

* v v a l ,  B--B __ . pq - - e o  Z Z P~v(#l~'pqlV ) (17) 
B #v 

by a threedimensional numerical integration method (see appendix) for the three 
cases that Cu = Cv is represented by Slater type 2pz, or 2px, 2pr or by 2s orbitals at 
center B. From comparison of V~ I'B-~ with the approximation of  Eq. (16) we 
extract a multiplication f a c t o r f f  al' B-B from 

* v v a l ,  B-B = fva l ,  B B v v a l ,  B--B 
�9 p q  d . p q  " (18) 

In Fig. 2 we p l o t f  v"I'B-B against R B. For  R B ~ 0 the correction factor  f val'B-B 
v v a l ,  B--B approaches zero, because V val'B-s, pq from Eq. (16) approaches infinity, but . pq 

becomes zero or at least a finite number. 

Fig .  2. C o r r e c t i o n  f a c t o r  fval.B-B %0 

(see Eq .  (18)) d e p e n d i n g  o n  the i r on  

ligand distance R B calculated for a ~ 0fi 
ligand 2p 2 electron configuration 
(curve 1), for a ligand 2p~, 2py z 0,2 
electron configuration (curve 2), 
and for a ligand 2s 2 electron con- 
figuration (curve 3) 

1 

I 2 3 & 5 6 

R ~ [a.u.] 

3) # belongs to the (M6ssbauer) center A and v to a ligand atom B, then V;q I'A-B 
takes care of  the contribution to the E F G  at A by the bonding electrons between 
center A and the surrounding ligands B. The angular integration over three 
spherical harmonics is reduced to an integration over two spherical harmonics 
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[9, 10] leading to 
oo 

- e  o ~, 2P.v f f u ( r ) ~ f v ( r ' ) r  2 dr (19) v v a I , A - - B  __ 
�9 p q  

~ v  0 

+ l -  

* Z c Y, DbM, D fr.M'(a)Ir, m (a')a a, 
L ' M "  ~r= - l _  

with l_ =min  (L', Iv), 1l~-21<~L'<~l~+2, and M ' = 0 ,  + 1 . . . . .  +L ' .  

The remaining integrals are evaluated by a twodimensional numerical integration 
method (see appendix) since the (-integration can be carried out analytically. 
Concerning the optimization of computing time it is important to note than in 
practice the integrals in Eq. (19) only depend on l, and I v of the AO's flu and fly, 
but not on the formal quantum numbers mu and my. 

4) ~ belongs to ligand B and v to ligand C, then Vp~ ~'B-B contains the contributions 
to the EFG at A by the overlap charges B [flu (r, ,9, q~)fC(r', 0 ,  q~')]r 2 dr df~ between 
ligand B and ligand C: 

+' fL T: ,a I .B -C_  _ ( r )  Yr , , , ,  ( Q )  "p.  - eoEeuv E D: D~,,~ l u m u  

u . . . .  l- (20) 

3rprq- r z 5,q [ 1 - 7(r)] fv(r') Yt~m~(t2') r2 dr dO, 
X r 5  

with l_ = min (l~, Iv). 

The amount of approximation involved in the calculation of V~ ~' ~ c  by projecting 
the overlap charges onto the axis, which connects B and C, has been analyzed by 
working out the exact threedimensional integration in Eq. (20) for the special case 

1.0 
~3 

83 

0.6 
> 

0.2 

Z 

o i 
R [a.u.]  

Fig. 3. Correction factor fval, B-C (see 
Eq. (21)) depending on the distance R 
between the center of mass of ligands B 
and C and the M6ssbauer atom A, 
calculated for p~ and pC orbitals as 
indicated in the insert 

ofp~ andp  c orbitals as indicated in Fig. 3. Comparing the approximate result Vpq 
with the "exact" value yields the correction factor 

, v v a l ,  B~C 
fval,B~ = "Pq (21) 

v v a l ,  B~C ' 
�9 p q  

which depends on the distance between A and the center of B42 overlap (Fig. 3). 
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4. Discussion 

From the total electric field gradient 

Vpq = Vplq gand . . . .  s --t- V;q 1' A--A _[_ V;ql, B-B _~_ V;q"  A-B ~_ V;ql,  B-C, (22)  

which contains contributions from ligand-core charges as well as from all valence 
electrons, we calculate quadrupole splittings AEQ and asymmetry parameters t/ 
for seven iron-containing compounds which are either characterized by ferrous 
low-spin (S=0) or ferric high-spin (S=5/2) state. In these cases we neglect spin- 
orbit coupling and calculate Vpq from the electronic ground state only. In agree- 
ment with this procedure the compounds under study show temperature- 
independent experimental quadrupole splitting. The MO calculation which yields 
the electronic ground state configuration tp for each compound has been described 
elsewhere [6, 11]. The atomic values e and Ae we used as MO parameters are 
closely related with values derived from Hartree-Fock calculations [12] and from 
experiments [13]. Concerning oxygen (O) we work with two different MO para- 
meters, one for compounds containing O which is nearly neutral and one for 
compounds containing ionic oxygen with effective charge close to -2e ;  this 
procedure has been found to be reasonable in many cases [11, 14-16]. 

In Table 1 experimental and calculated quadrupole splittings and asymmetry 
parameters are listed for the seven compounds under study. The various AE~ ~ 
and r~ ~ values correspond to different calculational models: 

1) AE~ 1~ and t/m are derived according to the numerical integration method 
described here. 

2) AE~ 2) and t/c2) result from the model t h a t  V;q I'A-A has been calculated according 
to Eq. (13) and the rest of Eq. (22) has been approximated according to Eq. (2), 
with q~ = q~ff being effective ligand charges. (The q~ff are derived from adding part 
of the overlap charge onto the ligand charges in order to be able to describe the 
dipole moment of the molecule under study by effective atomic charges only [6].) 

3) AE63) results from the model that V~ ~' A-A has been calculated according to 
Eq. (13) with P~f instead of P,~, and the rest of Eq. (22) has been approximated as 
described under 2). The effective bond order values p~,~f result from the same 
procedure which led us under 2) to q~rf Model 2) which uses P,~ and q~fr, is in- 

pelf and q~ff, because part of the consistent with respect to model 3), which uses _,~ 
overlap charge has been neglected in 2). 

4) AE64) results from applying model 2) and additionally taking care of overlap 
contribution to Vpq by applying a procedure which transforms the overlap part 

A B (~ ,  I Ppql$~ ) into the subspace of oA, leading to [ 17] : 
B --  A A (OualPpqlO,) - Z  (0 ,  [ fzpq[0u,) {~A [ 0~). (23) 

This model overestimates the overlap contribution to Vpq since q~ff and {tp A, I r 
both contain overlap charge. An additional approximation involved in this model 
is due to the fact that in practice the AO's ~k, A, are a limited basis set only. 
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5) AE~ 5) results from the model that v val'A-A has been calculated according to �9 p q  

Eq. (13) and the rest of Eq. (22) has been approximated by [3J: 

~ R a b R  ab ( R a b )  2 
V. Pq . . . .  lap+ligand__(l__ - - T ~ )  Z - - - P  --q - -  6P'1 

( R a b ) 5  qab" (24)  
ab 

The summation is over all atoms a and b of the molecular system under study. In 
case that a = A  and b=B,  q,b represents the overlap charge between the 
M6ssbauer atom A and ligand B, if a = B  and b = C, qab represents the overlap 
charge between ligands B and C, if a = b = B, qab represents the charge of ligand B. 
The charges q,b are calculated from bond order matrix elements Puv and from 
overlap integrals Su, : 

q~b = eo(Z, C5,b -- ~, Pu~ Su,)" (25) 

(eo is the positive elementary charge). The summation over/~ includes AO's ~'u 
on center a and that ofv includes AO's g,,, centered on atom b. e o Z  a represents the 
core charge of atom a.  The Cartesian coordinates Ri b and the distance R "b in 
Eq. (24) between iron and the various overlap charges q,b are chosen as if q,b were 
situated at the maximum of product O,~b~. Since the so defined qab have a distance 
R ab to the M6ssbauer atom larger than about 1.5 A the use of (1-7~o)= 10.1 
is adequate in most cases [8]. 

Comparing experimental and theoretical results in Table I we find that the various 
calculational models for Vpq lead to nearly equal results if the compound under 
study is highly ionic (GdFeO 3 and Fe2TiOs) or if the point symmetry of the 
M6ssbauer atom is relatively high (the latter condition implies that several V;q 
contributions cancel each other). The more covalency, i.e. the more overlap 
charge is involved, and the more deviation from octahedral or tetrahedral point 
symmetry of the M6ssbauer atom is included, the more critical the influence of 
approximations applied to estimate the overall EFG-tensor Vpq may become. This 

Table 2. Various contributions to the electric field gradient component  Vzz (in m m s  1) according to 
model  1) for Fe(CsHs)  2 and [Fe(CN)5NH3] 3-,  calculated with 100 abscissas 

Electric field gradient contributions Fe(CsHs)  z [Fe(CN)sNH3]  3- 

v ~ ,  A-A 

v~,A-~ 

From Fe 3d + 4.295 +0.348 
From Fe 4p - 1.267 +0.107 

- 12.379 - 7.546 
From Fe 3d-B - 0.405 +0.201 
From Fe 4s-B + 0.344 -0 .047  
From Fe 4p-B + 2.432 -0 .223  
From next nearest neighbors - 5.765 +0.147 
From next neighbors + 0.753 

14.679 7.700 

For comparison : 

V~,B 8 as derived from q~ff; see model 2) - 0.135 + 0.301 
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is shown drastically by the various AE~_ ) values of the three sandwich compounds 
Fe(C5H2)2, Fe(CsH4)e(CH2) 3 and Fe(CsH4)z(CHE)CO. 

In order to show the various contributions (which result from model 1)) to Vpq 
individually we tabulate for Fe(CsHs) z and [Fe(CN)sNH3] a- the Vzz com- 
ponents in Table 2. The considerable amount of  overlap contribution vval.a-B, zz 
in ferrocene is due to the relatively large amount of overlap charge, and also due 
to the specific geometric arrangement of ligands in this molecule, which implies 
that all Vzz contributions in Eq. (22) besides V val' h-a are enhanced by a factor 
of 10, because we are concerned with 10 identical ligands (CH-groups) B, each 
contributing equally to Vzz. Additionally, it is important to note that Fe 4p 
electrons contribute considerably to Vpq, and even Fe 4s contributions in V~ ~" A-B 
are significant. 

The error in AE~ 1), AE~ 2~ and AE ~5~ of ferrocene, as indicated in Table 1, is due 
to uncertainties in the X-ray structure analysis; changes of the inter-ring distance 
in Fe(CsHs)E by _+0.02 A yield 6(AE~I))= _+0.24 mms -1. 

The AE~ ~ values in Table 1 have been calculated with the use of nuclear quadrupole 
moment Q =0.21 barn [17]. An alternative value is derived from Fig. 4, where we 
compare AE~ xp with w "l~�9 pq , which is given in terms of 1/2 e 2 Vzz(l q-q2/3)uz. The 
slope of the solid line, which results from a least square fit of experimental data, 
corresponds to Q=0.18_+0.03 barn; this value has been used in the literature 
already before [18, 19]. For comparison the dashed line with Q = 0.21 barn is also 
given in Fig. 4. 

2 

E 
E 

c~ 
Ld / /  

/ /  

/ 
i 
5 

7 e  V~(1  + y  

/ 

IrO I'5 

[mm s -1 born -1] 

Fig. 4. Experimental quadrupole splittings AEQ at 300~ and calculated electric field gradients in terms 
of  �89 +q2/3)l/z for the compounds listed in Table 1. The solid line is a least square fit to the 
experimental points with a slope of  Q = 0.18 barn (nuclear quadrupole moment);  for comparison the 
dashed line which corresponds to Q = + 0.21 barn, (1 rams-1 b a r n - i  = 4.78.1016 eV c m -  2) 
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Since the numerical integration method is relatively time-consuming it is worth- 
while to check whether in cases with large AO basis sets the amount of additional 
information obtained by this method balances the expense of computer time. A 
molecular system with M =  50 basis orbitals (we use 59 for ferrocene) requires 
about 6400 basis integrals to calculate AE~ a), where each integral takes about 
t(Vp~) = 38 ms of computer time. 1 t(Vpq) increases with M 2, and with the number 
of abscissas above 100 does not increase the accuracy of the final results of Vpq 
(or of AEQ) but considerably increases the computer time t(Vpq) to calculate Vpq 
(Table 3). 

Table 3. Influence of the amount of abscissas n within 
the numerical integration method upon the total com- 
puter time t(Vp~) to evaluate the electric field gradient 
tensor Vpr and upon the accuracy of the calculated 
quadrupole splitting AEQ in ferrocene (Fe(CsHs)2) 

n t(Vm) ins A E o i n m m s  -1 

36 252 3.07 
100 374 2.68 
256 641 2.62 
484 1024 2.63 

Appendix 

The numerical integration method is based on a Gaussian type integration rule 
[20, 21]. Each integral is represented by: 

+1 

i=1 - 1  

The numerical integration of EFG tensor matrix elements is based on two- 
dimensional integrals, having the form: 

oo +1 

f dx f dyf(x, y). 
0 -1  

Substituting x= ln  2- ln(1 +z) the above integral transforms so that the above 
integration rule (Eq. (A1)) is applicable: 

oo +1 +1 +1 

f dyf(x,y)= f dz f dyf[x(z), y]. (A2) i77z 
0 - 1  - 1  - 1 

It turns out that the twodimensional integrals under study here are derived with 
about 3% accuracy using n2= 100 abscissas. 

A further test of the accuracy of the numerical integration method was performed 
by calculating overlap integrals which usually are derived by analytic integration 
[6, 10]. For a representative 2pz-2pz-overla p integral the exact value is -0.07313 

1 The computer work was carried out at the TR 440 of the "Rechenzentrum der Universit~t des 
Saarlandes". 
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while the numerical result yields - 0 . 07121  based on 100 abscissas or -0 .07255  
based on 400 abscissas. 
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